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Abstract--The force and torque acting on an accelerating rigid body of arbitrary shape, moving at low 
Reynolds number through a fluid at rest in infinity, are considered. The expressions found for the force 
due to pure translation and the torque due to pure rotation of the body each include three tensors which 
relate the acceleration and velocity to the force and the torque. In the case of combined translation and 
rotation, three "coupling tensors" are added to each of the above expressions. These expressions are 
extended for the case of a particle, immersed in a quiet fluid and acted upon by an impulse. Generalized 
Faxen's theorems are derived for non-steady flows which do not vanish in infinity. Finally, the effect of 
non-zero initial velocity of the fluid and the body is considered. The stop distance is shown to depend 
linearly on the initial velocity of the body through a displacement tensor which consists of the traditional 
quasi-stationary term and an additional tensor. This additional tensor depends on the geometry of the 
body and on the initial velocity field of the fluid. It is infinite if the kinetic energy of the initial field is 
infinite. Likewise, the expression for the force acting on the body contains an additional term which 
depends on time, on the geometry of the problem and on the initial velocity field. 
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1. I N T R O D U C T I O N  

The motion of rigid bodies, in a viscous fluid, is an important branch of fluid dynamics. To solve 
the equation of motion of a body one has to determine the fluid-dynamic forces acting on it. These 
forces are determined from the Navier-Stokes equation with the appropriate initial and boundary 
conditions: 

du 
p + pu. Vu = au - Vp; [I] 

p is the pressure, u is the velocity of the fluid, p its density and # its viscosity. Let a be a characteristic 
linear dimension of the rigid body, U a typical magnitude of the fluid's velocity u, r a typical time 
scale and v the kinematic viscosity, [I] may be written in a dimensionless form: 

c~u 
Re. St .~- + Re .u. Vu = Au - Vp; [2] 

Re is the Reynolds number and St is the Strouhal number, 

Ua a 
R e = l ,  S t = - - .  

v U~ 

In the paper we consider only low Re. In most applications one assumes that the motion is steady. 
Thus, the l.h.s, of [2] is zero and one is left with the steady Stokes equation. From this linear 
equation one may deduce that every rigid body possesses three resistance tensors which relate the 
translational and angular velocities to the force and torque acting on the body by the fluid (Happel 
& Brenner 1965). These tensors are an intrinsic property of the body and depend on its geometry 
and on the location of the origin of the coordinate system. Their evaluation in general is 
complicated but for a few symmetric bodies, and bodies which can be approximated by symmetric 
ones, their analytic form is known. 

If the motion is not steady, Re is small and St is large such that Re. St = O(1), we obtain, in 
dimensional form, the time-dependent Stokes equation: 

0u 
p = au - Vp. [3] 

153 



154 E. GAVZE 

One case, for which this condition is satisfied, is the case of a particle, oscillating with an amplitude 
1, such that a >> ! (Landau & Lifshitz 1959). Another case is that of a translating particle. If the 
time scale z is taken to be the Stokes relaxation time, then Re • St ~ p/pp, where pp is the density 
of the particle. The condition St ~> 1 leads to the condition Uapp/g ~ 1. There exist only a few 
solutions for the force acting on accelerating bodies. The best known is the Basset (1888) solution 
for the sphere: 

F( t )=  2rra3 3 pU(t)-6rral~U(t)-6na2x//~ ~' U__(z) - - -  J o  x / t  - z dr. [41 

The first term on the r.h.s, is the "added mass" which accounts for the changes in the kinetic energy 
of the fluid. It is the force that would act if the flow were potential. The second term is the steady 
Stokes resistance and the third term is the Basset memory term; it sums up the effect of the 
disturbances in the flow caused by the acceleration of the sphere. Other known solutions are the 
solution for the torque on a rotating sphere (Feuillebois & Lasek 1978), the force on a slightly 
deformed translating sphere in axisymmetric motion (Lawrence & Weinbaum 1986), the force on 
a spheroid in axisymmetric motion (Lawrence & Weinbaum 1988) and the torque on a rotating 
ellipsoid of revolution (Hocquart 1976). The last is given in its Laplace transformed form only. 
To the best of our knowledge no general theory exists. 

Boggio (1907a, b) solved the equation of motion of a sphere with the fluid-dynamic force [4] and 
an external force. His solution reveals that if p/pp is close to one, the character of the particle 
velocity, is considerably different from that calculated under the quasi-stationary assumption. 
Arminski & Weinbaum (1979) also solved the equation of motion of a sphere. They considered 
the motion of a sphere, which started to move from rest under the action of an external force which 
later ceased to act. They showed that the Basset term does not contribute to the total displacement 
but, again, the form of the velocity may be very different from the quasi-stationary velocity. Some 
results of the theory of Brownian motion, based on the time-dependent equation of motion, also 
reveal a behaviour different from what is expected from the steady Stokes equation. If one adopts 
the quasi-stationary approach, the velocity autocorrelation function of a Brownian particle, 
~b (t) = (U(t)U(0)), exhibits an exponential decay. In numerical solutions of the full Navier-Stokes 
equation for spheres, Alder & Wainwright (1970) found that ~b(t) decayed as t-3/2 for large r Such 
a decay was found by Widom (1971) and Zwanzig & Bixon (1970) in their analysis of the linear 
equation. It thus seems to use that a general analysis of the unsteady motion of bodies of arbitrary 
shape would be of interest. 

In view of the solution for the sphere [4], we show in the paper that a similar structure appears 
in the general case, namely an "added mass" tensor, the stationary resistance tensor and a "Basset" 
tensor. The "Basset" tensor will be defined in terms of solutions of the non-stationary Stokes 
equation [2]. These solutions, which we name "basic solutions", do not depend on the specific 
motion of the body. 

A closely related problem is that of a body immersed in a flow which is not at rest in infinity. 
The expression for the force exerted by the fluid on a spherical body was found by Mazur & 
Bedeaux (1974). Their result, which is a generalization of Faxen's theorem for the non-stationary 
case, is generalized by us to bodies of arbitrary shape and an analogous relation is derived for the 
torque. 

The stop distance of a particle plays an important role in the process of aerosol sampling and 
deposition from the atmosphere. A good account of the problem can be found in Fuchs (1964). 
Suppose a particle, immersed in a fluid is acted upon by some force and attains a velocity U(t). 
If at a certain moment t = 0 the force ceases to act, the distance, travelled by the particle before 
it comes to rest, is called the stop distance. In the classical quasi-stationary treatment one assumes 
that the viscous force is the steady force and the equation of motion is 

ml~(t) = •. U(T), U(0) = U°; [5] 

K is the translation tensor defined in Happel & Brenner (1965) and m is the mass of the particle. 
Thus, for a sphere of radius a and a fluid of viscosity #, the stop distance calculated by integrating 
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U(t) from zero to infinity is U°m/6~a#. In the general asymmetric case, where no coupling with 
rotation is involved, the terminal displacement vector X ~° is 

X °~ = - m K  -I  . U  °. [6] 

Likewise, the total rotation is 

~ = _~- t .  0r. to0, [7] 

i) is the rotation tensor and Or is the moment of inertia tensor. 
The basic shortcomings of the quasi-stationary approach are the assumption that the fluid 

velocity is instantaneously adjusted to the steady Stokes velocity field corresponding to the 
time-dependent particle velocity and the neglect of the change in the kinetic energy of the fluid. 
Therefore, a calculation which takes these two points into account will yield a larger stop distance; 
this was observed by Fuchs (1964). The slowing down of the particle must be accompanied by the 
slowing down of the fluid. It is therefore reasonable to expect a dependence of the stop distance, 
and of the force acting on the particle, on the initial velocity field at the time the force ceased to 
act. This velocity field is not, in general, the steady Stokes field corresponding to the particle 
velocity. We show that besides the quasi-stationary term the stop distance depends on an additional 
"inertia" tensor which gives a measure of the energy of the initial flow field to be dissipated by 
the viscosity. The effect of the initial field is also incorporated into the previously derived expression 
of the force. 

2. A RECIPROCAL FORMULA AND THE CONTINUITY OF THE FLOW 

As in steady Stokes flows, the use of a reciprocal formula proves to be useful. A reciprocal 
formula for unsteady Stokes flows was obtained by Maxey & Riley (1983). Let u and v be two 
Stokes flows in a domain fl with a boundary E and let crg[u ] be the stress tensor, then: 

;o iO [ui(O)l)i(t) - -  u i ( t ) v i ( O ) ]  dx = { u i ( t  - "t ')O'U[¥(T)] - -  P i ( T ) G i j [ U ( t  - -  z)]}njdx dz. [8]  

In the next section we will use the expression that is obtained from [8] by differentiating it with 
respect to the time variable t, namely: 

P fn [ui(O)~i(t)-f~,(t)vi(O)]dx = f~ {ui(O)~u[v(t)]-v~(t)au[u(O)]}njdx 

ji' Jz {~ , ( t -  z)o'u[v('r)]-v,(z)e,j[u(t- Q]}njdx d'r. [9] + 

Formulae [8] and [9] are valid only if the flows u and v are continuous with respect to t in every 
internal point of ft. Their application requires, therefore, a careful choice o f  the inititt[ and 
boundary conditions. 

A body which starts to move from rest, under the action of an impulse, generates a flow field 
which is potential at the initial moment t = +0  (Batchelor 1967, p. 471), but satisfies the no-slip 
boundary conditions for t > 0. Thus, a discontinuity in the tangential components of the flow at 
the boundary is permitted but the normal components must be continuous. This assertion is valid 
for all unsteady Stokes flows, not necessarily generated by the motion of a rigid body. It should 
be taken into account when [8] and [9] are used. 

3. REPRESENTATION OF THE FORCE AND TORQUE 

In this section we show that the force and torque, acting on a body of arbitrary shape, are related 
to the translational and rotational velocities of the body through the resistance tensors. These 
tcnsors arc expressed in terms of the "basic solutions" which depend on the geometry of the body 
only and, thus, have to be solved only once for any given shape. The translation and rotation 
tensors arc shown to be symmetric. For non-symmetric bodies rotation and translation arc coupled 
and "coupling" tensors, which are in general not symmetric, have to be added. 
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A. Force in Translation 

Let u(x, t) be the flow resulting from a translation U(t) of the body. u Satisfies [2] with the 
following initial and boundary conditions: 

u,I ~ = U,(t), u,l, o = O, u,l,= o =0,  U,(O) =0.  [lO] 

We define the "basic solution" V*; V k satisfies Stokes equation [3] and the following boundary and 
initial conditions: 

Vkl~=e *, V*lo~=O, t > O  [lla] 

and 

= ° ¢ k  [lib] 
O X  i ' 

where ek is the solution of the following Neumann problem: 

Aek=0 ,  OdPkn =ekini=nk,  ~bk]o~=0. [llc] 

e k is the unit vector in the kth direction and e k = 6u,. Due to [1 la] and [1 lc] the normal component 
of V k on the boundary is continuous at t = 0 and thus V k satisfies the conditions for its continuity 
at t = 0, as posed in section 2. Therefore, we may substitute u and V k in [9] and get: 

-O 3o Ox fo f O,(t- ) ,flV*(T)lnjdx- f : d, e*,O,flu(t- )lnjdx. [121 

The force F acting on the body is 

F,(t) ,r [u(t)]nidx. 

Performing the time integration in the last term on the r.h.s, of [12] and transforming the l.h.s. 
into a surface integral, we obtain 

I0 Fk(t) = Q , i ( J i ( t )  + Aki(t -- T)(li(Z) dr; [13] 

where 

The tensor Qk~ is the "added mass" (Batcbelor 1967) which, in the case of a translating sphere, has 
the form --~pna36k~. The term Qkif2~(t) is the force that would act on the body if the flow caused 
by the motion of the body were potential. A,~(t) is the ith component of the force that the flow 
W applies on the body. The tensor A depends on the basic solutions W which, themselves, depend 
on the geometry of the body, time and the density and viscosity of the fluid. 

Since the boundary conditions [1 la--c], for W, do not depend on time it seems reasonable to 
expect V k to converge to the steady solution as time tends to infinity. It was shown by Hoe, quart 
& Hincb (1983) that the flow due to an impulsive force decays as t -3a and the flow due to an 
impulsive couple, applied to centrally symmetric bodies, decays as t-sn. The rates of convergence 
of the basic solutions are therefore expected to be t -  ~a and t-3a, respectively. The first is the known 
rate for spheres and for spheroids, translating parallel to their axis of symmetry (Lawrence & 
Weinbaum 1986, 1988); the second is the known rate for rotating spheres (Feuillebois & Lasek 
1978). Moreover, Heywood (1974) showed that the solution u of the exterior non-steady Stokes 
problem with time-independent boundary conditions converges to the steady solution ~ with the 
same boundary conditions, in every bounded subset f~' of f~ in the norm of L: (if). His proof shows 
also that the time derivatives converge globally to zero in L~(fl): 

(u~- at): dx  , O, ~ ut(x, t) dx ~<-. [15] 
l -  I ' t - - ,oo i -  1 t 
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(The proof, though, is restricted to cases with no jump in the boundary.) The flow V ~ may, 
therefore, be expressed as the sum of the steady flow ~,k and a non-steady, asymptotically vanishing 
flow, ~k; 

V k = 7k + ~k. [161 

V k satisfies the steady Stokes equation and the boundary conditions: 

~ l x  = 6~,, V~l ® = O. [171 

9 k satisfies the non-steady Stokes equation with the boundary and initial conditions: 

l?,kloo=O, l?~l,.0 O4~k = Ox~ tT~. [181 

~'k converges asymptotically to zero, 

v~k I* O. 
t~oo 

The tensor f~(t) may therefore be decomposed into the steady translation tensor •, 

Kk, = ~ ~,jDr~nj dx, 
J~ 

and the Basset tensor, 

i.e. 

such that 

[19] 

A(t) = K + a(t) [211 

a(t) ,0. 
t~O0 

The expression for the force [13] assumes now the form 

Fk(t) = Qk, O,(t) + KkiU,(t) + fl Bki(t -- z)(Y,(z) dz. [22] 

Equation [22] has been derived under the assumption that the initial velocity of the body and the 
fluid were zero. However application of [9] shows that if the initial velocity of the body was not 
zero and if the initial fluid velocity was the steady Stokes flow, corresponding to the initial velocity 
of the body, then [22] is still valid. 

B. The Symmetry of the Resistance Tensors 
We now show that tbe tensor A is symmetric. This symmetry implies the symmetry of the Basset 

tensor B. We first note that the added mass tensor Q is symmetric (Batchelor 1967). This is a 
consequence of the following reciprocal identity for the two solutions ~b t and ~k of the Laplace 
equation: 

Now substituting the solutions V k and V ~ of [1 la-¢]  in the reciprocal formula [8] we obtain 

fa FOc~'V'(t)LOxj --~xj O*k V'(k)l dx =~od~ f {~UOjl[Vk(z)]--(ikjOjl[V'(t--T)]}n, dx. [24] 

Bki(t) = f~ ~tA~k(t)]nj dx, [20] 
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Transforming the l.h.s, into a surface integral on the body's surface it reduces to [23] and thus 
vanishes; [24] then becomes 

fo '[Aki(Z) -- dr = O. Aik(Z )] 

Since this identity holds for every t, A must be symmetric. 

C. Torque in Rotation 

The treatment of the rotational case runs along exactly the same lines as that of the translational 
case and differs only in the choice of the basic solutions. Consider a body starting to rotate from 
rest at an angular velocity ~( t )  about the origin of the coordinate system. Let u be the Stokes flow 
field resulting from this rotation; u satisfies the following initial and boundary conditions: 

uil,=0 = 0; ui]~ = eUkogj(t)xk; ~j(0) = 0. [25] 

We choose the basic solution in the form: 

W ~ = ~k  + Wk. 

~k  is the steady Stokes solution for the following boundary conditions: 

l~i l~ = eot6,jx, = eiktx,, I~1~ = O. [26a1 

Wk is the non-steady Stokes solution corresponding to the following conditions: 

ff'/klz=O, l~k[~ =0,  l ~ l t = 0 :  ~ x l -  I~,. [26b] 

~k k again is the solution of the outer Neumann problem of the Laplace equation: 

A~kk=0, ~ n i l ~ = e , k j x j n ~ ,  ~kkl~=0. [26c] 

With this definition the continuity condition at t = 0 is satisfied. The torque M is given in terms 
of the steady rotation tensor f~, 

['~ki = ~ eiljXlajm [~k]nm dx, [27] 
J~ 

the Basset tensor, 

and the potential tensor, 

bk,( t ) = f z eioxtajm[~lk( t )]nm dx, [281 

f .  
Hk~ = p J~ e~o~kxtnj dx: [29] 

f0 Mk(t)  = Hk~ i ( t )  + nk,w,(t) + bki(t -- ~)~(~)(~) dr. [301 

The symmetry of these tensors is proved in the same way as that of the case of translation. The 
case of rotating bodies was solved by Feuillebous & Lasek (1978) for a sphere and by Hocquart 
(1976) for an ellipsoid of revolution rotating about its symmetry axis, the last solution is given only 
in its Laplace transform form. 

D. General Rigid Body Motion 

A s  in steady motions, skew bodies in non-steady motions are acted upon by a torque in 
translation and a force in rotation. These are related to each other by the "potential", "steady" 
and "Basset" coupling tensors. Substitution of the flow due to translation in the reciprocal formula 
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together with the basic solution of rotation on the one hand and the flow due to rotation with the 
basic solution of translation on the other, yields the expressions for the coupling tensors. The 
potential coupling tensor G has the form 

Gk,= f ~j,,4~*x, njdx= f qJ'n, dx [311 

The Basset tensor is 

fl, i(t ) = fx eJitxta~[fCk(t )]n" dx = fx akj[fv'(t)lnjdx" [32] 

The steady tensor C has the same form except that the steady solutions V k and "vV; replace ~?k and 
V¢~. These tensors are in general not symmetric. The motion of a body may be described in a 
six-dimensional generalized space of translation and rotation. We denote the generalized force and 
velocity ~ and q / b y  

and the potential, steady and Basset resistance tensors P, R and T by 

P=-[~t ~] ,  R=--[~, C],  T=--[~ :]. [34] 

The expression for the generalized force is 

;o ~ =  - P . ~  - ~ . ~ -  ~-(t --~) '~(~)dT. [351 

E. A Remark on Applicability 
The practical use of [35] depends on finding the basic solutions. Except for some symmetric cases 

for which the analytical form of the resistance tensors is known, one would have to solve them 
numerically. The boundary elements method seems to be most suitable for the solution of the 
potential and the steady tensors. There exists quite an extensive literature on the topic, of which 
we mention only Hess (1975), Youngren & Acrivos (1975) and Brebbia et al. (1987). The solution 
of the Basset tensors is more complicated as it is a non-steady problem; so far no related 
publications are known to us. 

4. THE MOTION DUE TO AN IMPULSE 

In this section we derive expressions for the force acting on a body brought instantaneously into 
motion by an impulsive force. Let 6 > 0 be arbitrarily small and ui be the flow causes by the motion 
of the particle Ut(t): 

U,(t) = H(t)U ° + f~(t). [36] 

H(t) is the unit step function at t = 0, U, °. is the jump and f~(t) is continuous for t i> 0, f (0)  = 0. 
Since u~ is continuous for every t > 0, then 

r',fo fo P J0 ~ u,(t - r ) V ~ ( r ) d x  dz = p  [u,(6)V*i(t -6)-u,(t)V*~(O)]dx. [37] 

Differentiating this expression with respect to t, following the same procedure as in section 3 and 
beating in mind that V~[~ = 6a, [12] now assumes the form 

a4~ k 
P ; ,[u,(~)P'( t  - ~ ) - - ~ x  U,(t)ldx = -Fk(t)  + f U,(~)oi,[V'(t -~)]n, dx 

+ d~ __ (l(t - "t )ff q[ Vk ('~ )]nj dx. [38] 
d~ 
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(Fk is the force acting on the body.) 
according to Batchelor (1967), the limit of ui(6) is a potential flow, we may write 

u~(x, ~) , - G(x) 
~ o  x i 

where 

Letting di~0, the boundary velocity Ui(6)--,U °. Since, 

[39] 

G(x)=f~[x l~_y[ f ( y )dy  [40] 

for some density function f .  The left term on the l.h.s, of [38] vanishes due to the zero divergence 
of/;'~* and its vanishing on Y~. the surface integral on the r.h.s, of [38] becomes 

U ° f ao[Vk(t)lnj dx 
dZ 

and the expression for the force is 

fo Fk(t) = Qk, U,(t) + Ai,(t)U ° + Ag,(t - r)U,(r) dr, [41] 

where A and O are as in [14]. Decomposing A into E + B(t), as in [21], we finally obtain: 

Fk(t) = Q,,(/,(t) + KkiU,(t) + Bki(t)U ° + f /  Bk,(t - z)0,(z) dr. [42] 

Expression [42] for the force in the presence of an initial jump differs from [22] for the continuous 
case in the inclusion of the additional term Bk~(t)U °. It could have been derived formally by taking 
the time derivative of [36], with H(t)  = 6(0,  and substituting it in [22]. 

5. A R B I T R A R Y  STOKES F L O W - - F A X E N ' S  THEOREMS 

In this section we derive generalized Faxen's theorems for the force and torque acting on a body 
immersed in a Stokes flow which does not vanish in infinity. The method of derivation is similar 
to the method employed by Kim & Miflin (1985) and by Durlofsky et aL (1987) to obtain the 
hydrodynamic interaction of several bodies in steady Stokes flows. Let u be the undisturbed Stokes 
flow defined in the whole space, not vanishing in infinity and being zero at t = 0: 

c~ c~p 0ui 
POt u, =/~ Au~ - , = 0; u,I, = 0 = 0. [43] cOx~ Oxi 

Let U be the rigid motion of the body consisting of translation v~ and rotation co~: 

U~(t) = v,(t) + eUktO:(t)x,; Ui(O) = O. 

Let fl be the part ofspace exterior to the body, ~ the part occupied by the body and g the surface 
of the body. We define in fl the following Stokes flow w: 

w,l  = u , -  u,l , w,l  = 0, w,l, 0 = 0 t441 

Because of the linearity and uniqueness of the solution of the Stokes equation, the disturbed flow 
is u + w and the force acting on the body arises from both flows. Let F ~ be the contribution of 
u to the force: 

F*l = .fz a,[u]n: dx. [45] 

Since u is defined in the whole space, [45] may be transformed into an integral over the volume 
fl~: 

fo0 F), = , akj[U] dx = p , ~ Uk dx. [46] 
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F~ may be interpreted as a buoyancy term. To derive the contribution F z of w, we substitute w 
and the basic solution V k of [11 a-c] and [16] in the reciprocal formula [9]. Substituting the boundary 
conditions [44] for w, the overall force acting on the body is 

Fk(t)=P In f~kdx +Qkif~i+Gk'6)i--O f~ flidpkn'dx +KkiV'+CkiCOi 
i 

; .dx+;:,.,t 

+f/flki(t--T)(Ot(Z)dz--~/d'cfrtru[~lk(t--Z)]f~,(Qdx. [47] 

For the case of the sphere this expression reduces to that given by Mazur & Bedeaux (1974). The 
torque is obtained similarly with the aid of the basic solution of rotation wk: 

Mk(t) = Pe"J fa x'f~sdx + Hk'tb~ + G'f~-- P f~f4~bkn~dX + "k'¢°~ + C~'v'-- 

+forbk,(t--z)cb,(z)dz+f/fl~(t--Qf~,(z)dz--I/dzf ft,(z,o~:[(.V'(t--z)]njdx. [48] 

As an example we derive Faxen's theorem for the torque on a sphere of radius a. The basic 
solution for rotation is obtained form Feuillebois & Lasek (1978): 

1 [-I'vt\l/2-[ [ v t \  ~k= O, tr,t[V~e]nt = 3~ a e.uqx,, tr,t[~le]n, = -- x//-~ ~ ,erfcL~-]) J e x p / ~ ? , , x ,  [49] 

The sphere's motion may be assumed purely rotational since the translation components will cancel 
in [48], i.e. 

Ui = eUqtOk( t )xj. 

Substitution of [49] in [48] yields: 

Mk(t)=SkijP fa x'ftydx-s~p'aacOk(t)+3p a .1~ I x'ujdx 

8rta' f~ 1 . . [[-V(t--~)]l/2} v_Fv(t-T)- ] 
3 e^,[ 

~ / t  - ~ [ k  a 

, 
+ 'k'J , /  t - -  T 

The mean value theorem for surface integrals on a sphere (Courant & Hilbert 1962) states 

f(x) dx = 4ha: (2n + 1 ) - - - ~ .  v A"f(0). 
n=0 

MF 16/I--K 

[5o] 
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Applied to [50] the torque may be expressed in the alternative form: 

f 8~z/~a4/--- fo 1 M,( t )  = e,ij jn, x~j ( t )  dx - 8~#a3tOk(t) -~ X~ I~p tbk(Z) ~ _  Z ierfc 

× I j'expL J [ d, + 12x#a ~ , - - ( 2 n  + 1)! 2n A"-'ekq-~xiUJ(,)0 Ixl =° 

+ 4 n a 2 x / ~  ~ _ _ a  s" 1 ierfc v( z) '/~ exp v( - z) 
. =l (2n + 1)! 2n x/ t  - z 

X A n - -  l~,ki j ~ ~lj (Z) dz, 
cxi I lxl = 0 

assuming that this series converges. It should be noted that, unlike steady Stokes flows, A"u does 
not vanish for n 1> 2. 

6. STOP D I S T A N C E  OF P A R T I C L E S  

We being our investigation by examining two limiting cases. The first is the case of  a particle 
brought to its settling velocity under the action of  some external force, such that fluid velocity is 
the steady Stokes flow, and then left to deccelerate. The second is the case of  a particle set in motion 
by an impulse and then left to deccelerate. 

In the first case [22] is applicable. The equation of  motion of  the particle is 

toO(t) = Q.  l](t) + K.  U(t) + B(t - Q .  U(z) dz, U(0) = L0. [51] 

Applying the Laplace transform to this equation, the transform of the velocity 

U(p) -- M(p) .  U °, [521 

where 

M(p) = [p(mn - Q) - ~ - p ~ ] - ' .  [mU - Q - ~]. [53] 

(0 is the identity matrix.) The terminal displacement X ~ is 

X ~ = U(t)  dt = lim f.I(p). [54] 
0 p~0 

For translational motions B(t) is of  order t -In for large t so that ~(p) is of  order p-~a for small 
p [see, for example, for spheroids, Lawrence & Weinbaum (1988)]. Thus, X °° is infinite. It is obvious 
that the rate of  decay of  6 (0 ,  which reflects the rate of  spread of  disturbances in the fluid, is the 
cause to the infinite distance; a faster decay would result in a finite result. Indeed, the equation 
of  angular velocity derived form [30] is 

;0 D r " (JJ(l) = 0-0" tb(t) + ~ "  ta(t) + b(t - z)- tb(z) dz, ta(0) = ta °. [55] 

H and b are the added moment of inertia and the rotation Basset tensors, respectively. The 
corresponding matrix ~ ( p )  is 

~ ( P )  = [ P O t -  H) - f~ - p ~ ] - ' .  [n~- H - G]. [56] 

For a sphere of  radius a, H = 0 and ~(p) is obtained by Laplace transforming the results of  
Feuillebois & Lasek (1978): 

D [57] 

3(V/~ + v/'P ) 
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The total rotation ~p ~ is 

~oo _ _ _ ~ - , . [ ~ _ ~ a + D r ] . g O 0 = _ _ 6 . - , . 0 r . ¢ ~  °. [58] 

It is six times larger than the quasi-stationary result. 
In the second limiting case a particle is set in motion by an impulse. The equation of motion 

is derived from [47]: 

m ~ ( t )  = Q.  l](t) + •. U(t) + a(t)-  U ° + f~ a(t - ~)- I~(z) d~; U(0) = U °. [59] 

The matrix ~ (p )  is now 

~ ( p )  = [p(rnO - Q) - K - p ~ l - ~  . [mB - Q], [601 

so that the terminal displacement is finite: 

X °° = - - K - ' .  [mn-- Q ] . U  °. [61] 

This is just the classical quasi-stationary result, which ignores the inertia of the fluid, with the 
additional contribution of the added mass. In most realistic situations the settling velocity is not 
reached and the initial fluid velocity is in an intermediate state between the two described extremes. 

We now derive the general relation between the initial velocity field and the force acting on the 
particle. From this relation we obtain the relation for the terminal displacement. For the sake of 
brevity we first derive the expressions for pure translation and then extend them for a general body 
motion. Suppose that the particle velocity, at time t = 0, was U ° and the initial velocity of the fluid 
was W.  U °. We assume that the tensor field W satisfies the following: 

~W-----~k=0, w k l z = e  k, Wkl~=0.  [621 
axt 

e k is the unit vector in the kth direction. 
The substitution in [9] of the Stokes flow field defined by the initial condition [62] and the basic 

solution of translation V, defined by [1 la-c], yields, after some manipulation, the expression for 
the force acting on the particle: 

f: [fo ] F(t) = Q.  ~ ( t )  + K.  U(t)  + 8(t  - v). U(v) dT + 8 ( 0 "  U ° - p ~/t. W dx • U °. [63] 

(The tensor V' is the transpose of V.) This last expression is a more general form of the force and 
includes [22] as a special case. The last term on the r.h.s, is the explicit relation between the force 
and the initial field. Applying the Laplace transform 2 '  to the equation of motion arising from 
[63] one obtains: 

Recalling the decomposition [16] of the basic velocity: 

we get 

Passing to the limit p ~ 0  in the last term on the r.h.s, of [64]: 

l i m ' ~ [ P f n ~ / t ' W d x l - - - Q + P ; n ~ / t ' W d x + l i m p ~ n  , ~  [651 
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Thus, the expression for the terminal displacement is 

X ° = - m ~ - " U ° - p K - ' . I f o ~ / t ' W d x + l i m f , t , ~  ~/t • ]~tdxl  • U°. [66] 

The conditions for the convergence of the last integrals are different for translation and for 
axisymmetric rotation. For translation ~ and (/ decrease in infinity as 1/Ix I so that W must 
decrease faster than 1/Ixl 2. In axisymmetric rotation, the corresponding terms of ~2 and (/decrease 
as l/Ixl In general, in order for the last term on the r.h.s, of [66] to vanish, it is sufficient that 
W decreases faster than l/Ix[ 2. In this case: 

X°°=--mK-I'U°--P[~-I Efo ~ ,  W d x ]  . u  °. [67] 

Expressions [66] and [67] include the two extreme cases, described in the beginning of this section, 
as special cases. Indeed, if the initial velocity W is the steady stokes field ~?, then the volume 
integrals become infinite. If W is a potential flow, then the volume integrals reduce to surface 
integrals and [61] is recovered. 

It is possible to generalize [66] and [67] to the six-dimensional space of translation and rotation. 
Let ~oo be the terminal dispalcement vector and ~d the body's velocity: 

Ix l E:] q~ ~ q/ . [68] 

The initial velocity field W is defined as the 3 x 6 matrix: 

W = (Tw, RW); [69] 

where TW is the initial translation field defined by [62] and RW is the initial rotation field defined 
correspondingly. The steady Stokes field ~2 is a 3 x 6 matrix field composed of the steady solutions 
of translation r~? and of rotation R~? as defined in [16] and [26]a-c] in section 3: 

~2 = (v~?, R~/). [70] 

The resistance tensor matrix R is composed of the translation tensor ~, the rotation tensor ~ and 
the coupling tensor C: 

The particle's generalized inertia tensor matrix Dp is composed of the mass of the particle m and 
its moment of inertia tensor Dr: 

0 F mD 
P = L O  

In this designation the translation-rotation terminal 
the last term on the r.h.s, of [66] vanishes is 

01 [72] 
Dr " 

displacement, subjected to the assumption that 

~ = D. q/0, [73] 

where the displacement matrix D is 

D depends on the geometry of the body and on the initial field. 
We give now a physical interpretation of the additional term in D. The form of [74] suggests 

that the tensor 

= P Io ~t.  W dx [75] 0F(W) 

plays a role of an inertia tensor of the fluid with respect to the given initial velocity W. It is however, 
in general, not symmetric since no restrictions are imposed on W except for [62]. In fact, the notion 
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of an inertia tensor of the fluid as a constant relating the boundary conditions to the kinetic energy 
of the flow has no sense in the context of the non-stationary motion since this relation is time 
dependent. Yet, it does have sense in the context of the quasi-stationary motion, where the velocity 
field retains the form of the steady Stokes field. In fact, if the tensor 0F is added to the particle's 
inertia tensor 0p to form a fictitious particle-fluid inertia tensor, the corresponding quasi-stationary 
motion 

[Up + OF]' ~ = -- R" ~/ [76] 

results in the same displacement matrix [74]. o F may therefore be understood as an inertia tensor 
in a time-averaged sense. If the initial velocity field is taken to be the steady Stokes flow ~,  [76] 
defines the quasi-stationary motion for which the velocity field at any moment is the steady Stokes 
field. Bv(~ ) is infinite due to the translation part, but the rotation part Ruv(R~ ) may be finite for 
some symmetric geometries. In these cases it is symmetric, as may be seen from its definition, and 
the quasi-stationary and the non-stationary approaches lead to the same displacement matrix: 

RDF(R~) = P .In R~t. R~ dx. [77] 

For the rotating sphere it is finite and diagonal. The diagonal elements are twice the kinetic energy 
E of the steady Stokes flow caused by a sphere rotating in an angular velocity of magnitude one. 
The total rotation is 

O ~ = - f ~ - ' "  [Gr + 2E~]. o °. [78] 

It is identical with [58]. 
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